Time-Domain Non-Monte Carlo Noise Simulation for Nonlinear Dynamic Circuits with Arbitrary Excitatio - Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on

نویسنده

  • Alper Demir
چکیده

A time-domain, non-Monte Carlo method for computer simulation of electn'cal noise in nonlinear dynamic circuits with arbitrary excitations and arbitrary large-signal waveforms is presented. This time-domain noise simulation method is based on results from the theory of stochastic differential equations. The noise simulation method is general in the following sense. Any nonlinear dynamic circuit with any kind of excitation, which can be simulated by the transient analysis routine in a circuit simulator, can be simulated by our noise simulator in timedomain to produce the noise variances and covariances of circuit variables as a function of time, provided that noise models for the devices in the circuit are available. Noise correlations between circuit variables at different time points can also be calculated. Previous work on computer simulation of noise in electronic circuits is reviewed with comparisons to our method. Shot, thermal, and flicker noise models for integrated-circuit devices, in the context of our time-domain noise simulation method, are discussed. The implementation of this noise simulation method in a circuit simulator (SPICE) is described. Two examples of noise simulation (a CMOS inverter and a BJT active mixer) are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MOCA ARM: Analog Reliability Measurement based on Monte Carlo Analysis

Due to the expected increase of defects in circuits based on deep submicron technologies, reliability has become an important design criterion. Although different approaches have been developed to estimate reliability in digital circuits and some measuring concepts have been separately presented to reveal the quality of analog circuit reliability in the literature, there is a gap to estimate re...

متن کامل

Time-Mode Signal Quantization for Use in Sigma-Delta Modulators

The rapid scaling in modern CMOS technology has motivated the researchers to design new analog-to-digital converter (ADC) architectures that can properly work in lower supply voltage. An exchanging the data quantization procedure from the amplitude to the time domain, can be a promising alternative well adapt with the technology scaling. This paper is going to review the recent development in t...

متن کامل

A New Method for Nonlinear Circuit Simulation in Time Domain: NOWE [Short Papers] - Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on

A new method for the time-domain solution of general nonlinear dynamic circuits is presented. In this method, the solutions of the state variables are computed by using their time derivatives up to some order at the initial time instant. The computation of the higher order derivatiws b equivalent to solving the same linear circuit for various sets of dc excitations. Once the time derivatives of...

متن کامل

Monte Carlo simulation of ion implantation into two- and three-dimensional structures

Until now, Monte Carlo simulation of ion implantation into 3D-structures has been prohibited by the huge amount of CPU-time required. In this paper a method is presented which makes 3D-simulations with simple geometries feasible as well as 2D-simulations with arbitrary geometries. The method is applied to the sidewall doping of trenches.

متن کامل

SIMON-A simulator for single-electron tunnel devices and circuits

SIMON is a single-electron tunnel device and circuit simulator that is based on a Monte Carlo method. It allows transient and stationary simulation of arbitrary circuits consisting of tunnel junctions, capacitors, and voltage sources of three kinds: constant, piecewise linearly time dependent, and voltage controlled. Cotunneling can be simulated either with a plain Monte Carlo method or with a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004